A PROPERTY OF (v, k, λ) -DESIGNS

BY

O. MARRERO

ABSTRACT

It is shown that if the subsets X_1, \ldots, X_v of a set X form a (v, k, λ) -design, then there does not exist another subset X_{v+1} of X having *any* cardinality k_1 and intersecting each of the X_j , $1 \le j \le v$, in *any* number λ_1 of elements, where $0 < k_1 < v$ and $0 < \lambda_1 < k$ (in order to avoid uninteresting cases).

Let $X = \{x_1, \dots, x_v\}$ and let X_1, \dots, X_v be subsets of X. The subsets X_1, \dots, X_v are said to form a (v, k, λ) -design if

each X_j , $1 \le j \le v$, has k elements, any two distinct X_i , X_j , $1 \le i, j \le v$, intersect in λ elements, and $0 \le \lambda < k < v - 1$.

Such a design is completely determined by its *incidence matrix*; this is the (0, 1)matrix $A = [a_{ij}]$ defined by taking $a_{ij} = 1$ if $x_j \in X_i$ and $a_{ij} = 0$ if $x_j \notin X_i$.
More information about these combinatorial designs is available, for example,
in [1] and [2].

It is well known that if the subsets X_1, \dots, X_v of a set X form a (v, k, λ) -design, then it is not possible to find another subset X_{v+1} of X so that X_{v+1} has k elements and X_{v+1} intersects each X_j , $1 \leq j \leq v$, in λ elements. (This is a consequence, for example, of the well known "Fisher's inequality" for balanced incomplete block designs.) The purpose of this note is to prove the following more general result.

THEOREM. Suppose the subsets X_1, \dots, X_v of a set X form a (v, k, λ) -design. Then there does not exist another subset X_{v+1} of X so that X_{v+1} has k_1 elements and X_{v+1} intersects each X_j , $1 \leq j \leq v$, in λ_1 elements, where $0 < k_1 < v$ and $0 < \lambda_1 < k$.

Received March 6, 1972

O. MARRERO

It is known that no such subset X_{v+1} , as in the statement of the above theorem, can exist if one still allows X_{v+1} to have any cardinality $k_1, 0 < \lambda < k_1 < v$, but insists on requiring that X_{v+1} have λ elements in common with each $X_j, 1 \leq j \leq v$; see, for example, Theorem 1.1 in [3].

The proof of the above theorem will be accomplished by showing that the corresponding incidence matrix cannot exist. Let A be the incidence matrix of a (v, k, λ) -design. For notation, $\sigma \circ \eta$ will denote the usual inner product of two vectors σ and η . It will be shown that it is not possible to find a v dimensional (0, 1)-vector σ satisfying $0 < \sigma \circ \sigma = k_1 < v$ and $k > \sigma \circ \eta_r = \lambda_1 > 0$, for r = 1, \cdots, v , where η_r is the rth row vector of A.

Suppose it is possible to find such a vector σ , and consider η_1, \dots, η_v , σ as v dimensional vectors over the field of real numbers. There exist real numbers a_1, \dots, a_v , not all 0, such that $\sigma = \sum_{s=1}^{v} a_s \eta_s$. Since each column of A has exactly k ones,

$$\sigma = \sum_{s=1}^{\nu} a_s \eta_s = (a_1^{(1)} + \dots + a_k^{(1)}, \dots, a_1^{(\nu)} + \dots + a_k^{(\nu)}),$$

where $\{a_1^{(r)}, \dots, a_k^{(r)}\}$ is a subsequence of $\{a_1, \dots, a_v\}$ for $r = 1, \dots, v$. Because $\boldsymbol{\sigma} \circ \boldsymbol{\eta}_r = \lambda_1$ for $1 \leq r \leq v$,

$$\sum_{r=1}^{\nu}\sum_{s=1}^{k}a_{s}^{(r)}=k_{1}=\boldsymbol{\sigma}\circ\boldsymbol{\sigma}=\lambda_{1}\sum_{s=1}^{\nu}a_{s}.$$

Thus, $k_1 \neq 0$ implies $\sum_{s=1}^{v} a_s \neq 0$. But, since each row of A has exactly k ones, it also must be true that

$$\sum_{r=1}^{v} \sum_{s=1}^{k} a_{s}^{(r)} = k \sum_{s=1}^{v} a_{s}.$$

Consequently, $k = \lambda_1$, which is contrary to the hypothesis.

References

1. M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967.

2. H. J. Ryser, Combinatorial Mathematics, Wiley, New York, N. Y., 1963.

3. H. J. Ryser, An extension of a theorem of de Bruijn and Erdös on combinatorial designs, J. Algebra 10 (1968), 246-261.

FRANCIS MARION COLLEGE FLORENCE, SOUTH CAROLINA